Generalization of the Regularization Method to Singularly Perturbed Integro-Differential Systems of Equations with Rapidly Oscillating Inhomogeneity
نویسندگان
چکیده
In this paper, we consider systems of singularly perturbed integro-differential equations with a rapidly oscillating right-hand side, including an integral operator slowly varying kernel. Differential type and inhomogeneity coefficient at unknown function are studied. The main goal work is to generalize the Lomov’s regularization method reveal influence side on asymptotics solution original problem.
منابع مشابه
A method based on the meshless approach for singularly perturbed differential-difference equations with Boundary layers
In this paper, an effective procedure based on coordinate stretching and radial basis functions (RBFs) collocation method is applied to solve singularly perturbed differential-difference equations with layer behavior. It is well known that if the boundary layer is very small, for good resolution of the numerical solution at least one of the collocation points must lie in the boundary layer. In ...
متن کاملHomotopy analysis method and its application for singularly perturbed delay differential equations with layer behavior
در این مقاله یک روش تحلیلی بر پایهی روش تحلیل هموتوپی برای حل معادله دیفرانسیل-تفاضلی اختشاشی منفرد ارائه شده است. معادلات مورد بررسی در این مقاله از نوع تاخیری است که دارای رفتار لایه مرزی نیز هستند. تفاوت روش تحلیل هموتوپی با روشهای تحلیلی دیگر فراهم کردن یک راه ساده برای کنترل ناحیه همگرایی سری جواب بدست آمده معادله با استفاده از پارامتر کمکی تعبیه شده در این روش است. در این مقاله صحت و درس...
متن کاملNumerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type
In this paper, we have proposed a numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided in...
متن کاملComputing singularly perturbed differential equations
A computational tool for coarse-graining nonlinear systems of ordinary differential equations in time is discussed. Three illustrative model examples are worked out that demonstrate the range of capability of the method. This includes the averaging of Hamiltonian as well as dissipative microscopic dynamics whose ‘slow’ variables, defined in a precise sense, can often display mixed slow-fast res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Axioms
سال: 2021
ISSN: ['2075-1680']
DOI: https://doi.org/10.3390/axioms10010040